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Stepped Transformers on TEM-Transmission Lines
Valery Petrovich Meschanov, Member, LEEE, Irina Anatolyevna Rasukova, and Vladimir Dmitrievich Tupikin

Abstract-The paper presents comparative analysis of the prop-

erties of impedance stepped transformers both with monotonous
and nonmonotonous step-to-step impedance variation. A minia-
ture stepped transformer of a new structure based on a cascade

of an even number of uniform transmission line sections has
been synthesized. Section lengths are considerably shorter than
a quarter of the central wavelength, and the section impedances
alternate. The proposed transformers are tbe simplest to imple-

ment among the available analogs. As an example, the results
of the solution of the Chebyshev approximation problem for the

four-and six-section transformers of different specifications are

given.

I. INTRODUCTION

T RANSFORMERS are traditionally divided into two

groups, the first comprising the transmission-line

devices with a continuously tapered impedance function

(nonuniform transformers), the second including those on

the transmission lines with piecewise constant variation of

the impedance function (stepped transformers). The latter are

considerably shorter than the tapered transformers and find

broad application.

Stepped transformers are further divided into monotonic

(with a monotonic step-to-step impedance variation) and non-

monotonic (with nonmonotonic step-to-step impedance varia-

tion). The monotonic transformers, which are to be regarded as

classic, have been proposed and investigated in sufficient detail

by the American scientists [1]–[3], while the nonmonotonic

ones have been described mainly by the Russian authors

[4]-[7].

The present paper gives the comparative analysis of the

properties for both monotonic and nonmonotonic stepped

transformers. The results of investigation of the properties for

miniature nonmonotonic stepped transformers having a new

structure and characterized both by minimum length, optimum

frequency characteristics, and distinguished from the available

analogs by their simplicity of design are also presented.

II. GENERAL PROPERTIES OF THE STEPPED TRANSFORMERS

Properties of the stepped transformers on cascade connec-

tion of n uniform transmission line sections of equal lengths

1~= ~o /4 (Aj is the wave length corresponding to the central

frequency of the matching band), with the section impedances

varying monotonously from step to step, have been most

adequately investigated [1 ]–[3]. Fig. 1(a) shows the structure

of such a transformer (z, Z are impedances of the transmission
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lines to be matched, z, (i = 1,2,..., n) are impedances

quarterwave sections).

of

According to the classifications introduced in [4], the trans-

formers under consideration refer to stepped transformers of

Class I. They are antimetry devices; according to Riblet [3],

the antimetry condition may be written in the form

z~,zn+l-z = .2’2 i=l, z,. ... n. (1)

The main drawback of Class I transformers is their consider-

able length L = T&/4, where n is the number of transformer

sections. Stepped transformers of Class II synthesized using

m cascaded uniform transmission line sections of various

lengths with alternating impedances (m is always an even

number) are shorter by a factor of 1.5–2 [5]. In a particular

case the section impedances are equal to the impedances of

the transmission lines to be matched [5], [6], and [8] [see

Fig. l(b)]. The elementary two-section devices of such a

type have been proposed previously [8]; but they did not

find wide application on account of their narrow bandwidth.

More complex multistepped units have not been investi-

gated. Recently the Chebyshev approximation problem for

the prescribed amplitude frequency characteristic for multistep

superwide band impedance transformers of Class II has been

solved by the authors [5]. The problem has been formulated

as follows: to define the component values for the vector

A = (AI, AZ,.. -, Am) allowing one to achieve

(2)

where 19 = 2nA0 /A is the generalized electric variable;

01, 19zcorrespond to the lower and the upper matching band

boundaries; A is the transmission line wavelength; 117(19,A) I

is the modulus of the input reflection coefficient, lI_’(0, A) I =

(1– l/l’T1l 12)1/2, where l“,, is the element of the wave transfer

matrix for the transformer. The vector A components are the

normalized section lengths Li = &/& (i = 1,2, . c. , m,),

where 1, denotes the geometrical lengths of the sections.

The solution of the corresponding approximation problems

[5] has led the authors to the statement that the optimum

Chebyshev characteristics can be provided only by the struc-

ture, for which the relations (3) are true

1%= lm+l_i, ~=l,z,... ,rn/2. (3)

It can be easily proved that for the structure under consid-

eration the conditions (3) together with the equations

.z~= z, .q=z (4)

are the necessary and sufficient antimetry conditions. It is

generalized in [5] that in order to achieve the global minimum

0018–9480/96$05.00 @ 1996 IEEE
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Fig. 1. Strictures ot’ stepped transformers: (Q) Transformer of Class 1. (b) Transformer of Class II. (c) Mimature transformer with the sections

lengths, (d) Generalized structure of mimature transformer. (e) New structure of muuature transformer.

of equal

of the goal function 11’(6, A)] in the synthesis of any types of

the stepped transformers of cascaded TEM-transmission line

sections it is necessary to fulfil the antimetry condition.

The authors [5] have also evaluated the optimum of the

solutions obtained. Such an evaluation has been complicated

by the fact that the goal function G(A) = ‘~ ]17(fl, A)/ is

multidimensional. With allowance for the device antimetry it is

possible to reduce twice the number of independent variables

of the function G(A), and the vector A dimensions become

eqtml to m/2. For the simplest case of rn = 2 the function

G(A) turns one-dimensional (l-D) (the vector A has only one

component Al), which allows us to analyze it both numerical] y

and graphically. The numerical analysis of the function G(A1 )

shows that it is multiextremal within the interval (O, 1). It was

not found expedient to consider the function G(A1 ) for Al > 1

since the longitudal dimensions of the transformer turn to be

too large under such Al values. Fig. 2 depicts the function

G(A1) for Z/,z = 2,x = 192/01 = r-rrzl.5. As can be seen

from the plot, the function G(A1 ) has two local minimums.

The first one is located in the interval O < Al < 0.2 and k

global; Al for such a case is equal to 0.0771, which coincides

with the data obtained in [8] by use of the empirical formula

‘=$a’(”c’4R+:?+’)”2
The requirement to fulfil the antimetry condition [5] has

been also confirmed by the results obtained in [6], where the

optimum parameters for the stepped transformers of Class II

with maximally-flat (Butterworth’s) [characteristics are given.
Investigation of the m-section transformer of Class 11 (m =

2,4, ~~) has shown that its amplitude frequency characteristic

is analogous to that of the m/2-section transformer of Class I

designed for matching the transmission lines with the same

2 and Z and the same mismatching tolerance lr/~aX. Yet

the matching band of Class II transformer is only 10–1 s~o

narrower than that of the corresponding Class I transformer,

and its total length is shorter by a factor of 1.5–2. Besides,

Class II transformers are characterized by a simpler production

technology, due to the fact that on~y two dimensions of the

transmission line cross section corresponding to the imped-

ances z and Z are to be realized alclng their lengths. In case
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Fig. 2. The goal function of the transformer of Class II (WZ = 2).

of Class I transformer the number of such dimensions is equal

ton +2.

Another advantage offered by Class II transformers is

that it is easy to take into account the effect of electrical

nonuniformities arising at the planes of junction of the trans-

mission line sections having different lengths 11,12, ..., lm and

impedances z and Z [Fig. l(b)], on the amplitude frequency

characteristics. In our case there is only one type of such

nonuniformities being caused by jumpwise variation of the

geometric dimensions of the cross section of the transmission

lines having the impedance z at the regions of their junction

with the transmission line sections having the impedances Z.

In Class I transformers the number of such nonuniformities

is equal to n + 1 [Fig. l(a)], and they are caused by the

jumpwise variation of the geometrical dimensions of the

cross sections of the transmission line sections having the

impedances ,z1,22,. . . , z~ at the regions of their junction with

the neighbor sections of the transmission line.

The transformer length can be further reduced by using the

structure described in [9] representing the cascade connection

of m transmission line sections (m is even) of the same length

1 (1 < &/4), the impedances of which satisfy the following

inequalities:

{

‘zl<’z3<. ..<,zm_l
(.ZI >Zm in case z < Z). (5)

.Z2<Z4< ...Zm

This transformer structure is shown in Fig. l(c). This

transformer is an antimetric device, the antimetry condition

being

.z%z’m+l_* = 2’2, i=l,2, . . . , m/2. (6)

The use of this structure allows one to reduce the trans-

former length by a factor of 2-4 as compared to the analogous

device of Class I. The substantial drawback of such a miniature
transformer is the necessity to realize a high impedance ratio

R~ = z~~~ /~rnin reaching in a number of cases the values
of 30-50.

Search of possible ways of eliminating this drawback has

led the authors [7] to the generalized structure shown in Fig.

l(d). Such a transformer is a cascade of m transmission line

sections (m is even) of different lengths lt and impedances

z~ (i = 1,2, ..., m). It has been stated in [7] that only

structures, for which the relations (7) are true, will have

optimum Chebyshev characteristics

{

li = lm+l_i
i=l,2, .!.

z; ’zm+l_; = Zz’
, m/2. (7)

It is easy to prove that the relations (7) are the antime-

try conditions for the given structure. This confirms the

conclusion made in [5] that the antimetry condition is nec-

essary for achieving the global minimum of the goal function

G(A) = o=~o,l II’(O, A) I during the synthesis of the stepped

transformers of all types.

The comparison of (7) with the antimetry conditions for ‘

the stepped transformers of Class I and II, as well as with

(6) shows that the equations (7) are the generalized antimetry

conditions for the stepped transformers of all structure types.

Transformer section impedances satisfy the inequality

‘zm-l > ,zm_3 > . . . >.Z1>’%>Z %-2>””” > .z2 (8)

i.e., the impedances of both sections of even and odd numbers

decrease in the direction from the transmission line with a

higher impedance Z to .z impedance line, the impedance of

any section of an odd number being always larger than that

of any section of an even number. The following regularity is

observed here: the lengths of odd number sections increase in

the direction from the transmission line of a smaller impedance

z under matching to Z impedance line, and the lengths of even

number sections decrease in the same direction.

111, NEW STRUCTURE FOR

MINIATURE STEPPED TRANSFORMER

Another possibility to reduce the stepped transformer length

is the use of the stepped structure [see Fig. 1(e)], which differs

from the one investigated in [5], [6] by its section impedances

satisfying the conditions

{

‘zl=z3=. .,=2m_l

Z2=.Z4=. ..=Zm
m,=z,l, ..., (9)

where .zIzz = ,zZ, zn < z, z~_I > Z.

To solve the optimization problem in form (2), the algorithm

based on the linearization method offered by Pshenichni [10]

has been used. The description of this method as applied to

the problem of stepped transformer synthesis is given in the

Appendix.

In solving the synthesis problem the antimetry property of

the given device has been used, which is to be found in case

both (9) and (10) conditions are fulfilled

li = lm+l=i, i– 1,2,... , m/2. (lo)

That made it possible to reduce twice the dimensions of

the varied parameter vector A. In the general case of m-

resectiontransformer only one of the impedances (,z1 or .ZZ)

and only m/2 — 1 section lengths (e.g., Ll, L2, .””, L~/2–1)

should be varied while solving the synthesis problem. The
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TABLE I

OiWIMUM PARAMETERSFOR THE FOUR-SECTIONTRANSFORMERS

lr\max

0.064

0.070

0.074

0.075

L 2,4

o.04’i’9

0.0405

0.0282

0.0213

L
2,3

0.1171

0.0841

0.0553

0.0412

Z,, Q

52.38

72.91

114.55

155.67

z2, fl

23.86

17.14

10.91

8.03

L

0.3300

0.2500

0.16’70

0.1250

TABLE II

OPTIMUM PARAMETERS FOR THE SIX.SECTION TRANSFORMERS

Irlmax

0.067

0.075

0.082

0.084

L
4,6

0.037’5

0.0347

0.0230

0.017’5

L
2,5

0.1280

0.0909

0.0540

0.0398

L
3,4

Zf, f)

0.0875 54.24

0.0740 74.32

0.4800 123.09

0.0360 166.58

other impedance value as well as length L,

Z2, $)

23.05

16.82

10.16

7.50

L

0.5000

0.3900

0.2500

0.1856

~/2 may be defined

then from the relations

m/2–l

L=l

where L is normalized summary transformer length, which

was taken fixed when solving the synthesis problem. Thus the

vector of varied parameters is A = (ZI, L1, L2, . . ., Lm/2-1).

The results for Chebyshev approximation (2) for the four-

section transformer (m = 4), designed for matching the

transmission lines with the impedances z = 25 Q and Z =

50 C? in the frequency range of one octave, are given in

Table I. Table II shows the optimum parameters for the six-

section transformer designed for matching the same lines in

the frequency range of one and a half octave.

The investigation of the properties of the transformer based

on the proposed stepped structure has shown that only the

transformers for which the lengths of odd number sections

increase in the direction from the transmission line with

smaller impedance z to the line with Z impedance, and lengths

of sections of even numbers decrease in the same direction,

have the optimum characteristics (Tables I, 11).

In view of the results given in the present paper, as well as

in [5]–[7], we may state that the former regularity of section
length variation is inherent in all the stepped transformers

designed on the cascade connection of uniform ts-ansmission

lines of different lengths irrespective of the type of their

impedances (whether they assume two alternating values, or

are subjected to some other law of variation).

Fig. 3 shows the amplitude frequency characteristics for

two-section transformer of Class I (curve l) as compared to

those for the corresponding four-section miniature transformer

(curve 2) both designed for matching the transmission lines

with impedances relating as 1:2 in the frequency range of

one octave; the length of the miniature transformer being

O.125&, and that of the corresponding Class I transformer

Ir(@,A)
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0.0s

c
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Fig. 3. Amplitude frequency characteristic of the stepped transformers.

Curve I—transformer of Class I; curve 2—new structure of miniature trans-
former.

TABLE III
OFTIMUM PARAMETERS FOR THE FOUR-SECTION

TRANSFORMERSOF EQUAL-LENGTH SECTIONS [9]

rlmax

0.065

0.071

0.074

0.076

‘1 ,2,3,4

0.0833

0.0625

0.0418

0.0313

81’ Q Z2’Q z3’fl Z&, Q L

42.38 19.80 63.13 29.4.9 0.3330

55.75 13.58 92.03 22.42 0.2500

82.58 8.45 148.01 12.14 0.1670

109.64 6.17 202.48 11.40 0.1250

TABLE IV

OPTIMUM PARAMETERS FOR THE FOUR-SECTION
TRANSFORMERSON GENERALIZED STRUCTURE[7]

I I 1 I 1 , , , (

/r\max L,, g L2,3 2,,0 Z2,Q Z3, Q Z4, Q L

0.068 0.0625 0.0833 51.75 18.20 68.’73 24.15 0.2916

L.u0.070 0.0525 0.0725 62.00 15.28 81.85 20.15 0.2500

0075 00320 0.0510 103.00 iO.13 123.39 12.14 0 1660

0.076 0.0205 0.0420 152.90 7.78 160.95 8.18 0.1250

being 0.5)0. For comparison, Tables III and IV show the

optimum parameters of the known four-section miniature

transformers (computed on the data given in [7], [9]), designed

for matching the same transmission lines (R = Z/z = 2) as

the proposed transformer (Table I) in the frequency range of

one octave.

IV, CONCLUSION

The investigation of the performances for the stepped trans-

formers of various structures on cascade connection of uniform

TEM-transmission line sections has advanced lately. The gen-

eral patterns of the length and impedance distribution both

for the transformers of Class I and Class II and those of the

generalized structure have been defined.

The investigation of the monotonic Class I structures began

approximately 40 years ago with the basic works by Cohn,

Collin, and Riblet [1]–[3]. Nonmonotonic structures of Class

II and the generalized structures have been researched later,

primarily by the Russian scientists, with the application of the

numerical optimization methods [4]–[7].
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The use of the new structure (m = 4) proposed in the

present paper allows one to achieve the device summary

length equal to 0.125A0 (see Table I), which is one-fourth

of the length of Class I two-section analog.’ The same trans-

former specifications can be provided by the application of

the well-known miniature structure [9], offering the same

length reduction, but for this it is necessary to realize the

following impedances: .Z1 = 109.64 fl, z2 = 6.17 Q,,z3 =

202.49 Q, ,q = 11.40 Q; i.e., the maximum impedance ratio

Rmax = Z3 /z2 = 32.8. In the structure under consideration the
maximum impedance ratio Rmax = 19.39. As compared to the

available analogs [7], [9], the proposed transformer is the most

prospective in terms of productional simplicity, since only

four cross-section dimensions corresponding to impedances

z, .z1,zz, Z are to be realized along the m-section transformer

length. The number of such dimensions in transformers [7],

[9] is equal to m + 2.

APPENDIX

The linearization method offered by Pshenychni [10], which

is efficient as applied to the problems of discrete minimax,

will be used here to solve the problem (2), similar to that

described in [5].

First, we will transform (2) into the discrete problem by

introducing the set of N >> p points over the interval [01, 02]

(Al)

where Fi(A) = ll’(Oi, A) [, p is the number of the variables.

Let us consider the linearization method as applied to

problem (Al). Let us denote the function F(A) as follows:

F(A) = l?;j~ ~i(A).
Suppose X is the initial approximation, the points Aj, .i =

0,1,... , k have already been defined. Then

Ak+l = Ak + ~kpk

where p~ is n-dimension vector indicating the direction, C% is

a step in this direction and is set equal to 2–i0, where ZOis the

first of the subscripts of i = 0,1,.. ., for which the following

inequality is valid:

F(Ak + 2-;~k) ~ F(Ak) – 2-i~llpk112, ;<s <1.

The slope direction pk is defined by solving the auxiliary

problem

PI: (~~ + 0.511pk112),

(Fi(Ak),Pk) -ok <0; z = ~6(Ak) (A2)

where6 > 0,~6(Ak) = {i: 1 ~ z < N,~~(Ak) Z F(Ak)–ti}.

Since the initial problem is that of a continuous minimax, the

number of discrete points N should considerably exceed the

number p of the variables to provide the accuracy sufficient for
practical applications. The numerical e~penment has shown

that for p = 4 the sufficient accuracy is obtained with

N 2 100. Already with N = 100 and Fi(Ak) < 6, the

subscript plurality consists of N points. This complicates the

solution of the auxiliary problem (A2) and requires large scope

of computations. In view of this, we will make use of the

problem specificity, i.e., of the fact that the initial problem is

that of the continuous minimax. When forming the subscript

plurality J8 (Ak ), we will take into account only the points, at

which the local maximums for a given step are achieved. Then

p + 1 points will get into the plurality J6 (Ak ) at the most, in

view of the fact that the number of the local maximums in

the nondegeneracy problem (Al) exceeds that of the variables

by unity.

Problem (A2) is a problem of convex programming. Since

its direct solution is difficult, we will transform it into a dual

problem. It maybe shown that the dual problem is the problem

of square programming and has the form

2

min ~
x

U, F;(Ak) –
x

UiF%(Ak)
u

iG.7d(Ak) tGJ~(A~) -

under constraints

x
Ui=l, Ui>o, ‘i e J6(Ak)

zcJJ(A~)

where U is the vector of dual variables U,, i c J6 (Ak ). To

solve this problem, it is convenient to apply the method of

conjugate gradients in combination with the design procedure

[10].

The following values for constants 6 and N have been

chosen to find the optimum transformer parameters: 8 =

1, N = 60–120 (depending on the number of the variables).

In all the cases of the antimetry structure we observed the

square speed of the convergence. This is also confirmed by

the fact that beginning from a certain k, the step a~ became

equal to unity.
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