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Stepped Transformers on TEM-Transmission Lines
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Abstract—The paper presents comparative analysis of the prop-
erties of impedance stepped transformers both with monotonous
and nonmonotonous step-to-step impedance variation. A minia-
ture stepped transformer of a new structure based on a cascade
of an even number of uniform transmission line sections has
been synthesized. Section lengths are considerably shorter than
a quarter of the central wavelength, and the section impedances
alternate. The proposed transformers are the simplest to imple-
ment among the available analogs. As an example, the results
of the solution of the Chebyshev approximation problem for the
four-and six-section transformers of different specifications are
given.

I. INTRODUCTION

RANSFORMERS are traditionally divided into two

groups, the first comprising the transmission-line
devices with a continuously tapered impedance function
(nonuniform transformers), the second including those on
the transmission lines with piecewise constant variation of
the impedance function (stepped transformers). The latter are
considerably shorter than the tapered transformers and find
broad application.

Stepped transformers are further divided into monotonic
(with a monotonic step-to-step impedance variation) and non-
monotonic (with nonmonotonic step-to-step impedance varia-
tion). The monotonic transformers, which are to be regarded as
classic, have been proposed and investigated in sufficient detail
by the American scientists [1]-[3], while the nonmonotonic
ones have been described mainly by the Russian authors
[4-7].

The present paper gives the comparative analysis of the
properties for both monotonic and nonmonotonic stepped
transformers. The results of investigation of the properties for
miniature nonmonotonic stepped transformers having a new
structure and characterized both by minimum length, optimum
frequency characteristics, and distinguished from the available
analogs by their simplicity of design are also presented.

II. GENERAL PROPERTIES OF THE STEPPED TRANSFORMERS

Properties of the stepped transformers on cascade connec-
tion of n uniform transmission line sections of equal lengths
l; = As/4 (X, is the wave length corresponding to the central
frequency of the matching band), with the section impedances
varying monotonously from step to step, have been most
adequately investigated [1]-[3]. Fig. 1(a) shows the structure
of such a transformer (z, Z are impedances of the transmission
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lines to be matched, 2, (¢ = 1,2,---,n) are impedances of
quarterwave sections).

According to the classifications introduced in [4], the trans-
formers under consideration refer to stepped transformers of
Class 1. They are antimetry devices; according to Riblet [3],
the antimetry condition may be written in the form

ZiZng1—i = 24 1=1,2,---,m. )

The main drawback of Class I transformers is their consider-
able length L = n),/4, where n is the number of transformer
sections. Stepped transformers of Class II synthesized using
m cascaded uniform transmission line sections of various
lengths with alternating impedances (m is always an even
number) are shorter by a factor of 1.5-2 [5]. In a particular
case the section impedances are equal to the impedances of
the transmission lines to be matched [5], [6], and [8] [see
Fig. 1(b)]. The elementary two-section devices of such a
type have been proposed previously [8]; but they did not
find wide application on account of their narrow bandwidth.
More complex multistepped units have not been investi-
gated. Recently the Chebyshev approximation problem for
the prescribed amplitude frequency characteristic for multistep
superwide band impedance transformers of Class II has been
solved by the authors [5]. The problem has been formulated
as follows: to define the component values for the vector

A = (Ay, As,---, A,,) allowing one to achieve
i (6, 4) 2
min  max | 16, 4)] @
where § = 27, /)\ is the generalized electric variable;

61,02 correspond to the lower and the upper matching band
boundaries; A is the transmission line wavelength; |I'(6, 4)|
is the modulus of the input reflection coefficient, |I'(#, A)| =
(1—1/|T11|?)*/2, where Ty, is the element of the wave transfer
matrix for the transformer. The vector A components are the
normalized section lengths L; = L;/A, (1 = 1,2,---,m),
where [, denotes the geometrical lengths of the sections.

The solution of the corresponding approximation problems
[5] has led the authors to the statement that the optimum
Chebyshev characteristics can be provided only by the struc-

ture, for which the relations (3) are true
Iy = lmy1—i, 1=1,2,---,m/2. 3)

It can be easily proved that for the structure under consid-
eration the conditions (3) together with the equations

zi=4, z9=2z @)

are the necessary and sufficient antimetry conditions. It is
generalized in [S] that in order to achieve the global minimum
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Fig. 1. Structures of stepped transformers: (a) Transformer of Class 1. (b) Transformer of Class II. (¢) Mimature transformer with the sections of equal

lengths. (d) Generalized structure of mimiature transformer. (e) New structure of mimature transformer.

of the goal function |I'(§, A)| in the synthesis of any types of
the stepped transformers of cascaded TEM-transmission line
sections it is necessary to fulfil the antimetry condition.

The authors [5] have also evaluated the optimum of the
solutions obtained. Such an evaluation has been complicated
by the fact that the goal function G(A) = “7* |I'(4, A)] is
multidimensional. With allowance for the device antimetry it is
possible to reduce twice the number of independent variables
of the function G(A), and the vector A dimensions become
equal to m /2. For the simplest case of m = 2 the function
G(A) turns one-dimensional (1-D) (the vector A has only one
component A, }, which allows us to analyze it both numerically
and graphically. The numerical analysis of the function G(A,)
shows that it is multiextremal within the interval (0, 1). It was
not found expedient to consider the function G(A4;) for A; > 1
since the longitudal dimensions of the transformer turn to be
too large under such A; values. Fig. 2 depicts the function
G(Aq) for Z/z = 2,x = 62/81 = rm1.5. As can be seen
from the plot, the function G(A;) has two local minimums.
The first one is located in the interval 0 < A; < 0.2 and is
global; A; for such a case is equal to 0.0771, which coincides

with the data obtained in [8] by use of the empirical formula

A 1 1/2
[ = -2—7(:_8,1'('Ctg (R + ji + 1> .

The requirement to fulfil the antimetry condition [5] has
been also confirmed by the results obtained in [6], where the
optimum parameters for the stepped transformers of Class II
with maximally-flat (Butterworth’s) characteristics are given.

Investigation of the m-section transformer of Class I (m =
2, 4, - ) has shown that its amplitude frequency characteristic
is analogous to that of the m/2-section transformer of Class I
designed for matching the transmission lines with the same
z and Z and the same mismatching tolerance |T'}n.x. Yet
the matching band of Class II transformer is only 10-15%
narrower than that of the corresponding Class I transformer,
and its total length is shorter by a factor of 1.5-2. Besides,
Class II transformers are characterized by a simpler production
technology. due to the fact that only two dimensions of the
transmission line cross section corresponding to the imped-
ances z and Z are to be realized along their lengths. In case
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Fig. 2. The goal function of the transformer of Class II (m = 2).

\/

04 06 08 Ay

of Class I transformer the number of such dimensions is equal
ton+ 2.

Another advantage offered by Class II transformers is
that it is easy to take into account the effect of electrical
nonuniformities arising at the planes of junction of the trans-
mission line sections having different lengths 3,3, - - -, [, and
impedances z and Z [Fig. 1(b)], on the amplitude frequency
characteristics. In our case there is only one type of such
nonuniformities being caused by jumpwise variation of the
geometric dimensions of the cross section of the transmission
lines having the impedance z at the regions of their junction
with the transmission line sections having the impedances Z.
In Class I transformers the number of such nonuniformities
is equal to n + 1 [Fig. 1(a)], and they are caused by the
jumpwise variation of the geometrical dimensions of the
cross sections of the transmission line sections having the
impedances 21, 22, - - - , 2, at the regions of their junction with
the neighbor sections of the transmission line.

The transformer length can be further reduced by using the
structure described in [9] representing the cascade connection
of m transmission line sections (m is even) of the same length
I (I < Ao/4), the impedances of which satisfy the following
inequalities:

{21 <23 < oo < 21

iy < za < e 2 (721 >zm Incase z < Z). (5)

This transformer structure is shown in Fig. 1(c). This
transformer is an antimetric device, the antimetry condition
being

ZyZml— = 22, i=1,2,---,m/2. (6)

The use of this structure allows one to reduce the trans-
former length by a factor of 2—4 as compared to the analogous
device of Class I. The substantial drawback of such a miniature
transformer is the necessity to realize a high impedance ratio
R,. = Zmax/?#min reaching in a number of cases the values
of 30-50.

Search of possible ways of eliminating this drawback has
led the authors [7] to the generalized structure shown in Fig.
1(d). Such a transformer is a cascade of m transmission line
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sections (m is even) of different lengths I, and impedances
zi (1 = 1,2,---,m). It has been stated in {7] that only
structures, for which the relations (7) are true, will have
optimum Chebyshev characteristics

{izl;ni_";iz___izz7 121727'7777‘/2 (7)

It is easy to prove that the relations (7) are the antime-
try conditions for the given structure. This confirms the
conclusion made in [5] that the antimetry condition is nec-
essary for achieving the global minimum of the goal function
G(A) = eefgi’f%] IT'(6, A)| during the synthesis of the stepped
transformers of all types.

The comparison of (7) with the antimetry conditions for
the stepped transformers of Class I and II, as well as with
(6) shows that the equations (7) are the generalized antimetry
conditions for the stepped transformers of all structure types.

Transformer section impedances satisfy the inequality

el > Zm_3 > D> 2> Zm > Zm—2 > 0 > 22 (8)
i.e., the impedances of both sections of even and odd numbers
decrease in the direction from the transmission line with a
higher impedance Z to z impedance line, the impedance of
any section of an odd number being always larger than that
of any section of an even number. The following regularity is
observed here: the lengths of odd number sections increase in
the direction from the transmission line of a smaller impedance
z under matching to Z impedance line, and the lengths of even
number sections decrease in the same direction.

III. NEW STRUCTURE FOR
MINIATURE STEPPED TRANSFORMER

Another possibility to reduce the stepped transformer length
is the use of the stepped structure [see Fig. 1(e)], which differs
from the one investigated in [5], [6] by its section impedances
satisfying the conditions

{Zl:Z3:...:zm—1 m:274’.." (9)

2= 2= = 2m

where 2129 = 22, 2m < 2,2m-1 > Z.

To solve the optimization problem in form (2), the algorithm
based on the linearization method offered by Pshenichni [10]
has been used. The description of this method as applied to
the problem of stepped transformer synthesis is given in the
Appendix.

In solving the synthesis problem the antimetry property of
the given device has been used, which is to be found in case
both (9) and (10) conditions are fulfilled

li = lmy1=i, i—1,2,-+-,m/2. (10)

That made it possible to reduce twice the dimensions of
the varied parameter vector A. In the general case of m-
section transformer only one of the impedances (z1 or 22)
and only m/2 — 1 section lengths (e.g., L1, L2, "+, Lym/2—1)
should be varied while solving the synthesis problem. The
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TABLE 1
OPTIMUM PARAMETERS FOR THE FOUR-SECTION TRANSFORMERS
lrlmax L1,4 I’z,s Zz’Q Zz’Q i
0.064 0.0479 0.1171 52.38 23.86 0.3300
0.070 0.0405 0.0841 72.91 17,14 0.2500
0.074 0.0282 0.0553 114.55 10.91 0. 1670
0.075 0.0213 0.0412 155.67 8.03 0. 1250
TABLE II
OpPTIMUM PARAMETERS FOR THE SIX-SECTION TRANSFORMERS
lrlmax Li,é Lz,s L3,4 Zx’ﬂ Za'Q L
0.067 | 0.0375 | 0.1280 | 0.0875] 54.24 23.05 | 0.5000
0.076 | 0.0347 | 0.0909 | 0.0740] 74.32 16.82 | 0.3900
0.082 | 0.0230 | 0.0540 | 0.4800{ 123.09 10.16 | 0.2500
0.084 | 0.0175 | 0.0398 | 0.0360] 166.58 7.50 | 0.1856

other impedance value as well as length L., /; may be defined
then from the relations

m/2-1
2oy = 2Z[/ 212y Lmya = L/2 — Z L,
=1

where L is normalized summary transformer length, which
was taken fixed when solving the synthesis problem. Thus the
vector of varied parameters is A = (zy, Ly, La, - - -, Lm/2_1)-

The results for Chebyshev approximation (2) for the four-
section transformer (m = 4), designed for matching the
transmission lines with the impedances z = 25 Q and Z =
50 € in the frequency range of one octave, are given in
Table 1. Table II shows the optimum parameters for the six-
section transformer designed for matching the same lines in
the frequency range of one and a half octave.

The investigation of the properties of the transformer based
on the proposed stepped structure has shown that only the
transformers for which the lengths of odd number sections
increase in the direction from the transmission line with
smaller impedance z to the line with 7 impedance, and lengths
of sections of even numbers decrease in the same direction,
have the optimum characteristics (Tables I, II).

In view of the results given in the present paper, as well as
in [5]-[7], we may state that the former regularity of section
length variation is inherent in all the stepped transformers
designed on the cascade connection of uniform transmission
lines of different lengths irrespective of the type of their
impedances (whether they assume two alternating values, or
are subjected to some other law of variation).

Fig. 3 shows the amplitude frequency characteristics for
two-section transformer of Class I (curve 1) as compared to
those for the corresponding four-section miniature transformer
(curve 2) both designed for matching the transmission lines
with impedances relating as 1:2 in the frequency range of
one octave; the length of the miniature transformer being
0.125X,, and that of the corresponding Class I transformer
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Fig. 3. Amplitude frequency characteristic of the stepped transformers.

Curve I—transformer of Class I; curve 2—new structure of miniature trans-
former.

TABLE III
OPTIMUM PARAMETERS FOR THE FOUR-SECTION
TRANSFORMERS OF EQUAL-LENGTH SECTIONS [9]

‘I‘Imax L1,2,3,4 21‘ a Zz’Q ZQ'Q ZG’Q L
0.065 | 0.0833 42.38 | 19.80 63.13 | 29.49 | 0.3330
0.071 | 0.0625 55.75 | 13.58 92.03 | 22.42 | 0.2500
0.074 | 0.0418 82.58 8.45 | 148.01 | 12.14 | 0.1670
0.076 | 0.0313 | 109.64 6.17 | 202.48 | 11.40 | 0.1250
TABLE IV
OpTIMUM PARAMETERS FOR THE FOUR-SECTION
TRANSFORMERS ON GENERALIZED STRUCTURE [7]
1T e L, L, .| %,.278,.0 2,2 12,0 L
0.068] 0.0625! 0.0833] 51.75{ 18.201 68.73] 24.15| 0.2916
0.070] 0.0525{ 0.0725] 62.00] 15.28{ 81.85] 20.15]| 0.2500
0.075] 0.0320{ 0.0510{103.00| 10.13}123.39] 12.14| 0.1660
0.076( 0.0206| 0.04201562.90;{ 7.78{160.95| 8.18| 0.1250

being 0.5),. For comparison, Tables III and IV show the
optimum parameters of the known four-section miniature
transformers (computed on the data given in [7], [9]), designed
for matching the same transmission lines (R = Z/z = 2) as
the proposed transformer (Table I) in the frequency range of
one octave.

IV. CONCLUSION

The investigation of the performances for the stepped trans-
formers of various structures on cascade connection of uniform
TEM-transmission line sections has advanced lately. The gen-
eral patterns of the length and impedance distribution both
for the transformers of Class I and Class II and those of the
generalized structure have been defined.

The investigation of the monotonic Class I structures began
approximately 40 years ago with the basic works by Cohn,
Collin, and Riblet [1]-[3]. Nonmonotonic structures of Class
I and the generalized structures have been researched later,
primarily by the Russian scientists, with the application of the
numerical optimization methods [4]-[7].
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The use of the new structure (m = 4) proposed in the
present paper allows one to achieve the device summary
length equal to 0.125), (see Table I), which is one-fourth
of the length of Class I two-section analog. The same trans-
former specifications can be provided by the application of
the well-known minjature structure [9], offering the same
length reduction, but for this it is necessary to realize the
following impedances: z; = 109.64 Q,z2 = 6.17 Q,23 =
202.49 Q,z4 = 11.40 Q; i.e., the maximum impedance ratio
R,ax = #3/72 = 32.8. In the structure under consideration the
maximum impedance ratio R, = 19.39. As compared to the
available analogs [7], [9], the proposed transformer is the most
prospective in terms of productional simplicity, since only
four cross-section dimensions corresponding to impedances
z,21, 29, Z are to be realized along the m-section transformer
length. The number of such dimensions in transformers [7},
[9] is equal to m + 2.

APPENDIX

The linearization method offered by Pshenychni [10], which
is efficient as applied to the problems of discrete minimax,
will be used here to solve the problem (2), similar to that
described in [5].

First, we will transform (2) into the discrete problem by
introducing the set of N > p points over the interval [6, 2]

min 11&2}& F;(A4) (AD)

where F;(A) = |T'(6;, A)|,p is the number of the variables.
Let us consider the linearization method as applied to

problem (A1), Let us denote the function F'(A) as follows:

F(4) = |23, Fi(4).

Suppose A, is the initial approximation, the points A;,j =

0,1,---,k have already been defined. Then
Apy1 = Ag + oxpi

where pi is n-dimension vector indicating the direction, oy, is
a step in this direction and is set equal to 2%, where i, is the
first of the subscripts of ¢ = 0,1, - - -, for which the following
inequality is valid:

F(Ar +27'P) < F(Ar) — 27%||pe ||, i1<e<l

The slope direction py is defined by solving the auxiliary
problem

min (B + 0.5lpkl1%),
(Fi(Ar),pr) — B <0; i€ Js(Ag) (A2)

where § > 0, Js(Ay) = {i: 1 <@ < N, Fi(Ag) > F(Ax)—6}.

Since the initial problem is that of a continuous minimax, the
number of discrete points N should considerably exceed the
number p of the variables to provide the accuracy sufficient for
practical applications. The numerical cf(periment has shown
that for p = 4 the sufficient accuracy is obtained with
N > 100. Already with N = 100 and F;{Ax) < 6, the
subscript plurality consists of N points. This complicates the
solution of the auxiliary problem (A2) and requires large scope
of computations. In view of this, we will make use of the
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problem specificity, i.e., of the fact that the initial problem is
that of the continuous minimax. When forming the subscript
plurality Js(Ax), we will take into account only the points, at
which the local maximums for a given step are achieved. Then
p+ 1 points will get into the plurality Js(Ay) at the most, in
view of the fact that the number of the local maximums in
the nondegeneracy problem (A1) exceeds that of the variables
by unity.

Problem (A2) is a problem of convex programming. Since
its direct solution is difficult, we will transform it into a dual
problem. It may be shown that the dual problem is the problem
of square programming and has the form

2

min 1| N UF(AW| - D UF.(Ax)
1€Js(Ag) 1€J5(Ag) -
under constraints
Y. Ui=1, Ui20, i€ Js(4)

1€J5(Ar)

where U is the vector of dual variables U,,i € Js(Ag). To
solve this problem, it is convenient to apply the method of
conjugate gradients in combination with the design procedure
{10].

The following values for constants § and N have been
chosen to find the optimum transformer parameters: § =
1, N = 60-120 (depending on the number of the variables).
In all the cases of the antimetry structure we observed the
square speed of the convergence. This is also confirmed by
the fact that beginning from a certain k, the step o became
equal to unity.
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